Lesson 10.3 Area of Other Polygons

Solve. Show your work.

Example

Audrey drew a regular pentagon with side lengths of 5 inches. She divided the pentagon into 5 identical triangles, and measured the height of one of the triangles to be 3.4 inches. Find the area of the pentagon.

A regular pentagon is a pentagon with equal side lengths.

Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{5}{3.4} \\
& =8.5 \mathrm{in.}^{2}
\end{aligned}
$$

Area of pentagon $=$ \qquad - area of triangle

$$
\begin{aligned}
& =\frac{5}{8.5} \\
& =42.5 \text { in. }^{2}
\end{aligned}
$$

The area of the pentagon is \qquad square inches.

A pentagon has five sides. It can be divided into five congruent isosceles triangles.

Name:
Date:

1. Holly cut out a piece of cardboard in the shape of a regular pentagon to make a birthday card. She divided the cardboard into 5 identical triangles, and measured the height of one of the triangles to be 9.6 centimeters.
Find the area of the pentagon.
Area of triangle $=\frac{1}{2} b h$
$=\frac{1}{2}$. \qquad . \qquad
$=$ \qquad cm^{2}
Area of pentagon $=$ \qquad - area of triangle

$$
\begin{aligned}
& =\square \\
& =\square \\
& \mathrm{cm}^{2}
\end{aligned}
$$

The area of the pentagon is \qquad square centimeters.
2. Jeremy makes a plate in the shape of a regular pentagon. He divides the plate into 5 identical triangles, and measures the height of one of the triangles to be 5.2 inches. Find the area of the pentagon.

Name: \qquad Date:

Solve. Show your work.

Example

There is a hexagonal playground in a park near Laura's house.
She measured the sides of the playground and found that they were all 10 feet. She then divided the hexagon using a piece of chalk into 6 identical triangles. She measured the height of one triangle and found that it was 8.7 feet. Find the area of the hexagonal playground.

Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{10} \cdot \underline{8.7} \\
& =43.5 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of hexagon } & =\frac{6}{6} \cdot \text { area of triangle } \\
& =\frac{43.5}{6} \cdot \underline{261} \mathrm{ft}^{2}
\end{aligned}
$$

A regular hexagon has six equal sides. It can be divided into six congruent equilateral triangles.

The area of the playground is 261 square feet.
3. Michael has a hexagonal tablemat. He measured the sides and found that they were all 20 centimeters. He then divided the tablemat into 6 identical triangles. He measured the height of one triangle and found that it was 17.3 centimeters. Find the area of the tablemat.

$$
\begin{aligned}
& \text { Area of triangle }=\frac{1}{2} b h \\
& =\frac{1}{2} \text {. } \\
& \text {. } \\
& = \\
& \mathrm{cm}^{2} \\
& \text { Area of hexagon }= \\
& \text { - area of triangle } \\
& \text { • } \\
& = \\
& \mathrm{cm}^{2}
\end{aligned}
$$

The area of the tablemat is \qquad square centimeters.
4. The top of a footstool is in the shape of a hexagon. Wendy measured the sides of the hexagon and found that they were all 19 inches. The threads on the top of the footstool divide it into 6 identical triangles. She measured the height of one triangle and found that it was 16.5 inches. Find the area of the hexagon.

8. Area of trapezoid $W X Y Z=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
\underline{540} & =\frac{1}{2} \cdot h \cdot(\underline{22}+\underline{38}) \\
\underline{540} & =\frac{1}{2} \cdot h \cdot \underline{60} \\
\underline{540} & =\frac{1}{2} \cdot \underline{60} \cdot h \\
\underline{540} & =\underline{30} \cdot h \\
\underline{540} \div \underline{30} & =\underline{30} \cdot h \div \underline{30} \\
\underline{18} & =h
\end{aligned}
$$

The height of trapezoid $W X Y Z$ is $\underline{18}$ inches.
9. 34 meters
10. 23 feet
11. a) Area of trapezoid CDEF $=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
\underline{832} & =\frac{1}{2} \cdot h \cdot(\underline{28.6}+\underline{13}) \\
\underline{832} & =\frac{1}{2} \cdot h \cdot \underline{41.6} \\
\underline{832} & =\frac{1}{2} \cdot \underline{41.6} \cdot h \\
\underline{832} & =\underline{20.8} \cdot h \\
\underline{832} \div \underline{20.8} & =\underline{20.8} \cdot h \div \underline{20.8} \\
\underline{40} & =h
\end{aligned}
$$

The height of trapezoid CDEF is 40 feet.
b) Area of triangle $F D E=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{13} \cdot \underline{40} \\
& =\underline{260} \mathrm{ft}^{2}
\end{aligned}
$$

The area of triangle FDE is $\underline{260}$ square feet.

Lesson 10.3

1. Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{14} \cdot \underline{9.6} \\
& =\underline{67.2} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of pentagon
$=\underline{5} \cdot$ area of triangle
$=\underline{5} \times \underline{67.2}$
$=\underline{336} \mathrm{~cm}^{2}$
The area of the pentagon is $\underline{336}$ square centimeters.
2. 97.5 square inches
3. Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{20} \cdot \underline{17.3} \\
& =\underline{173} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of hexagon
$=\underline{6} \cdot$ area of triangle
$=\underline{6} \times \underline{173}$
$=1,038 \mathrm{~cm}^{2}$
The area of the tablemat is 1,038 square centimeters.
4. 940.5 square inches

Lesson 10.4

1.

2.

3. a) Area of square $=\ell^{2}$

$$
\begin{aligned}
\underline{81} & =\ell^{2} \\
\sqrt{81} & =\ell \\
\underline{9} & =\ell
\end{aligned}
$$

Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{15} \cdot \underline{9} \\
& =\underline{67.5} \mathrm{ft}^{2}
\end{aligned}
$$

The area of the triangle NPQ is 67.5 square feet.
b) Area of trapezoid $M P Q R$
= area of square $M N Q R$ + area of triangle NPQ
$=\underline{81}+\underline{67.5}$
$=\underline{148.5 \mathrm{ft}^{2}}$
The area of trapezoid MPQR is 148.5 square feet.
4. a) 7 inches
b) 49 square inches
c) 105 square inches
5. Area of trapezoid $S T V Y=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
\underline{242} & =\frac{1}{2} \cdot h \cdot(\underline{18}+\underline{18}+\underline{8}) \\
\underline{242} & =\frac{1}{2} \cdot h \cdot \underline{44} \\
\underline{242} & =\frac{1}{2} \cdot \underline{44} \cdot h \\
\underline{242} & =\underline{22} \cdot h \\
\underline{242} \div \underline{22} & =\underline{22} \cdot h \div \underline{22} \\
\underline{11} & =h
\end{aligned}
$$

